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The functional integral method for the statistical solution of stochastic differen- 
tial equations is extended to a broad, new class of nonlinear dynamical equa- 
tions with random coefficients and initial conditions. This work encompasses 
previous results for classical systems with random forces and initial conditions 
with arbitrary statistics and provides new results for systems with nonlinear 
interactions which are nonlocal in time. Closed equations of motion for the 
correlation and response functions are derived which have applications in the 
calculation of particle motion in stochastic magnetic fields, in the solution of 
stochastic wave equations, and in the description of electromagnetic plasma 
turbulence. As an illustration of the new results for nonlocal interactions, the 
electromagnetic dispersion tensor is calculated to first order in renormalized 
theory. 
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1. INTRODUCTION 

The first satisfactory theory for the calculation of the statistical properties 
of classical dynamical systems was developed by Martin, Siggia, and 
Rose (1) (MSR), who constructed a Heisenberg operator theory which 
parallels the Schwinger formalism (2) of quantum field theory. They derive 
closed equations for the statistical correlation and response functions, 
which can be used as a starting point for systematic perturbation theories. 
Considerable effort has been expended in refining and extending this 
operator theory. (3-6) 
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Although functional integral techniques have a long and successful 
history in quantum theory and equilibrium statistical mechanics ~7) they 
have only recently been exploited in the study of classical statistical 
dynamics. (8) DeDominicis (9) and Janssen (1~ have shown that the equa- 
tions of motion for the correlation and response functions given by MSR 
can also be derived from a functional integral solution to the underlying 
stochastic differential equations. 

This functional integral method is analogous to Feynman's path inte- 
gral formalism for quantum theory/7) It is a more natural and elegant 
approach to the statistical dynamics of classical systems. Whereas MSR are 
required to introduce, ad hoc, an operator which is "conjugate". to the 
classical random field, the analog of this operator appears naturally in the 
functional integral method. Moreover, the functional integral approach is 
easily extended to a broad class of nonlinear dynamical equations with 
non-Gaussian initial conditions, multiplicative random forces, (~1) and non- 
local interactions. 

In Section 2.1 we establish our notation and define a class of stochastic 
differential equations which includes many problems of physical interest, 
and the operator formalism of MSR is reviewed in Section 2.2 to introduce 
the fundamental ideas involved in the description of classical statistical 
dynamics. In Section 2.3 we develop the functional integral formalism 
which provides a formal statistical solution for the entire class of dynamical 
equations defined in Section 2.1. This is the primary contribution of this 
paper. 

Our formalism encompasses previous work on stochastic differential 
equations with arbitrary random initial conditions and local forces; and it 
provides new results for forces and interactions which are nonlocal in time. 
In Section 3.1 we recover Deker's (6) results for the corrections due to 
non-Gaussian initial conditions. The equations of motion for the correla- 
tion and response functions for a dynamical system with a multiplicative 
random force are derived in Section 3.2. These results have also been 
derived by Phythian. (11) They differ from the equations of Deker and 
Haake (3) in that the statistics of the random force are decoupled from the 
statistics of the random field. This separation of the statistical averages has 
practical advantages. We further note that the results of Deker and 
Haake (3) are also easily derived using a slight modification of our tech- 
niques. Thus the functional integral approach serves to unify the different 
results for this problem. 

In Section 3.3 we derive the statistical equations for nonlinear dynami- 
cal systems with nonlocal interactions. These new results provide a com- 
plete formal description of the statistical dynamics of an important class of 
stochastic differential equations. The equations for the correlation and 
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response functions provide a closed statistical description of electromag- 
netic plasma turbulence including the effects of discrete particle noise. 
Finally, as a practical application of our formal results, we derive the 
electromagnetic dispersion tensor for a turbulent plasma to lowest nontriv- 
ial order in renormalized perturbation theory (direct interaction approxima- 
tion).~ ~2) 

2. THE OPERATOR AND FUNCTIONAL INTEGRAL THEORIES OF 
CLASSICAL STATISTICAL DYNAMICS 

2.1. Stochastic Differential Equations 

Consider the class of stochastic differential equations which can be 
written in the following generic form: 

~t,~(1) = Ul(1) + U2(12)~b(2) + U3(123)~(2)~b(3) + - . .  

+ U,(1 . . .  n ) t p ( 1 ) . . ,  tp(n) + 6 ( t ,  - t0)@o(1 ) (2.1) 

where ~(1) is in general a real, multicomponent classical field defined on 
~d+l X ~m which has a jump discontinuity at t I = to: ~b(1)~ H ( t  1 - t o )  

�9 ~b(1). The index 1 -= ( t l , x  ~ . . .  Xd ,  n 1 . . .  rtm) = (tl, 1) represents the time, 
space, and other variables and internal indices which are arguments of the 
field ~b(1); and summation and integration over repeated indices is as- 
sumed. Moreover, the "forces" and interactions U~(1. . .  i ) =  Ui(1 . . .  i) 
+ U,,.(1 . . .  i) are integrodifferential operators which can be decomposed 

into a deterministic piece U/(1 . . .  i) and a random piece Ui(1 . . .  i) with 
known statistics. The interactions are also required to be causal. In other 
words, if Un(1 . . .  n) involves time integrations, the integrals can only range 
from t o to t I . Finally, the initial condition will generally consist of a 
deterministic and a random piece: ~0 = ~0 + ~0. 

The fundamental statistical quantities are the mean field (tp(1)), the 
fluctuation function or cumulant function (~p(1)~(2)) C-=(~(1)~(2)~ - 
(~p(1))(~(2)) and the averaged response function to infinitesimal external 
perturbations R(12)=  (6~(1)/6U(2))[vr 0. Here the brackets ( . . .  
will be used to indicate averages over all random elements in the problem. 

We will develop a complete formal description of the statistical dy- 
namics for this general class of stochastic differential equations. Since 
many interesting physical problems can be cast in this form, their formal 
solution will constitute special cases of our results. 

Some important problems which lead to stochastic differential equa- 
tions of this type are discussed below for illustration. 
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2.1.1. Navier-Stokes Turbulence with a Random Stirring Force. The 
Navier-Stokes equation for a randomly stirred, incompressible fluid is 

0iv + P,:v" Vv = vV2v + f (2.2) 

where P, is the transverse projection operator, v is the viscosity, and f is a 
transverse, random stirring force with known statistics. 

This is an example of a problem with a linear random force. The 
correspondence with (2.1) follows by identifying 

~(1) -- vi,(t,,x,)H(t I - to) , i, = 1,2,3 

U,(1) -- f , ( t l ,X, )  

ff2(12) = vV 2. 6(1 - 2) 

U3(123 ) ~ - - [ P t ] i t i 3 V i 2 ( x 3 ) ' ~ ( t l -  t2)(~(X 1 - -  X2)~(1 - -  3) 

(2.3) 

2.1.2. Particle Motion in Stochastic Magnetic Fields. Krommes, 
Kleva, and Oberman (13) have derived a stochastic differential equation for 
the evolution of the phase space density P(x ,v , t )  of charged particles 
moving along magnetic field lines. The magnetic field is assumed to be 
primarily in the z direction with weak shear in the y direction and a small 
random component b (x, t) in the x direction. Their result for x << L s is 

Op+v(o_~+x ~)  O2p ~_~ O~ --ffss ~y P - D o y  2 -C{v}P+vb  P=6(t - to)P o 

(2.4) 
where v is the particle velocity along the field lines, L s is the shear iength, D 
is the classical perpendicular diffusion coefficient due to particle collisions, 
and C {v} is a collision operator in velocity space. 

Equation (2.4) is an example of a stochastic differential equation with 
a multiplicative random force which can be written in the form of (2.1) by 
identifying 

~(1) -- P(t,,x,,v,)H(t, - to) 
Ul(1) -- 0 

(2.5) 

1 f f2 (12)~-  v, + - D ~ y 2  -C{v2 }  -6(1 - 2 )  

L~2(12 )-= - v , b ( 1 ) ~  -8(1 - 2) 
u~ 2 
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2.1.3. Stochastic Wave Equation. The propagation of waves in ran- 
dom media is described by stochastic wave equations of the form 

02~ -- bV2~ (2.6) 
312 

where b is a random variable with known statistics. If we integrate (2.6) 
once with respect to time using Cauchy initial conditions q~(t0)= ~o and 
(Oq~/St)(to) = OeOo/Ot, then we get a stochastic differential equation with a 
nonlocal interaction 

0q, 
_ ( ' d t ,  b V 2 ~ +  Oq'o (2.7) 

Ot ,to Ot 

This equation can then be written in the form of (2.1) by identifying 

~(1) = e ~ ( t l , x l ) H ( t  1 -- to) 

0q'0 v,(1) = (x,) (2s) 

U2(12 ) = b ( t 2 , X z ) V 2 H ( t ,  - t2)6(x , - x2) 

2.1.4. Electromagnetic Vlasov Turbulence. The Vlasov-Maxwell equa- 
tions describe the coltisionless evolution of distributions of charged parti- 
cles ~(x, v, t) and their associated electric and magnetic fields: 

E +  c �9 is---0 (2.9) 

 Eot ~ d 3 v Z v ; ~  (2.10) 

~__BB +cV • E = 0 (2.11) 
Ot 

where s is the charged particle species index, qs is the charge, and m s is the 
mass. Statistics enters the problem here through the assumption of (1) 
random initial conditions or (2) some implicit randomness in the distribu- 
tion functions which requires ensemble averages to be taken to define 
quantities of physical interest (i.e., random phases). This problem can be 
cast into the form of (2.1) in two different ways. First, ~(1) can be defined 
to be a vector field with N + 6 components, where N is the number of 
charged particle species. The remaining six components arise from the 
vector electric and magnetic fields. Alternatively, (2.10) and (2.11) can be 
used to solve for E and B in terms of the particle distribution functions. 
Then ~(1) represents only the N particle distributions. Although the second 
method introduces nonlocal interactions through retardation effects, it 
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reduces the number of components of the vector field 6. This reduction has 
computational advantages in the usual cases where N = 1 or 2. 

Here we will follow the second approach. We solve (2.10) and (2.11) in 
the usual way by introducing the scalar and vector potentials A 0 and A. (16) 
The results are 

B(x,, t,) --= B(12)+(2) = V~xA(12)~(2) 

E(x l, tl) =-- E(12)+(2) = - V,~~ - - - -  

(2.12) 

1 0 
c at, A(lZ)q~(2) (2.13) 

where we have defined ~b(1)~f(tl,Xl,Vl,S1). The definitions of the four 
potential operators depend on the choice of gauge. In the coulomb gauge 
V. A = 0, for example, we have a retarded vector potential and an 
"instantaneous" scalar potential: 

/~k(Xl'/1) ~ A(12)@-(2) 

8[t~ + J(.,, - , ,2) /oJ-  t,] 
-fa~x~ dt 2 Ix 1 - x21 

A~ tl) ~- ~~ 

qs2fd3v2 Pt : V2fs  2 
$2 

(2.14) 

=fd3xzdt2 8(t2 - tl) - Y f q 2jd3 2Js2 (2.15) 

where Pt is the transverse projection operator. 
The retarded four-potential gives rise to nonlinear interactions which 

are nonlocal in time. Since the potentials are retarded the interactions are 
also causal. The evolution of 6(1) depends only on the past, not on the 
future. 

The correspondence of Eqs. (2.9), (2.10), and (2.11) with Eq. (2.1) is 
completed by identifying 

Uffl) = 0 

02(12) ~ - v l "  Vx," 8(1 - 2) 
(2.16) 

[ v l •  ] ~ 
U3(123)------ mtql E!12)+ c (12) . ~ . ~ ( 1 - 3 )  

0 .8(1 - 3) - -  . (12) - ~-~., 

where L(12) is the Lorentz force operator. 
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2.2. The Operator Formalism of Martin, Siggia, and Rose 

In order to describe the statistical properties of a classical dynamical 
system which is governed by a stochastic differential equation, we need a 
theory for the calculation of the correlation functions and response func- 
tions (averaged Green's functions). If we naively average stochastic differ- 
ential equations such as (2.1) with respect to random forces and interac- 
tions, random initial conditions, or an ensemble of realizations, we arrive at 
an equation for the evolution of @(1)) .  Unfortunately, the dynamics of 
@(1)) will depend in general upon higher-order correlation functions 
(U,(I  . . .  n)~,(2) . . ,  tp(n)) owing to the nonlinear interactions Un(1 . . .  n), 
n >/3 and U~(1 . . .  n), n/> 2. The evolution of these higher-order correla- 
tion functions depends in turn upon still higher-order correlations. The 
resulting hierarchy of equations can only be closed by some truncation 
procedure.(~7~ 

Martin, Siggia, and Rose (1) developed the first satisfactory method for 
overcoming this difficulty. They succeed in deriving closed, exact equations 
for the evolution of the first few statistical correlation and response func- 
tions. Although these exact equations are complicated, they provide a 
starting point for a renormalized perturbation theory. In addition, the 
fundamental objects of the theory--the mean field (g,(1)), the fluctuation 
function @(1)~b(2)) c, and the response function R(12) to infinitesimal 
perturbations--are the physical "observables" of greatest interest. 

In order to take advantage of the powerful methods of quantum field 
theory, MSR treat the classical field 6(1) as a Heisenberg operator. The 
classical correlation functions are then defined to be "vacuum" expectation 
values of time-ordered products of these operators. The important contribu- 
tion of MSR was the introduction of a complex adjoint operator ~(t, 1) 
which does not commute with ~b(t, 2): 

[~( t ,  1) ,~(t ,2)]  = 8(1 - 2) 

is defined, moreover, such that the time-ordered vacuum expecta- 
tions of products of operators vanish whenever ~ is the latest operator: 
(4 (1 )4 (2 )~(3 ) . . .  >§ = 0 if t I > t 2 ,  t 3 . . . .  In particular, (~(1)) = 0. 

The time-ordered expectation value of ~(1) and ~(2) gives the 
averaged response function (~8~ 

R(12) = (~(1)~(2) )+  

and the definition of time-ordered expectations of products of the operators 
and ~ insures the causality of R. In fact, all statistical quantities of 

interest are determined by expectations of time-ordered products of the 
operators g, and ~. In the theory of quantum fields these expectations are 
the Green's functions. 
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The adjoint operator also makes it possible to construct a Hamiltonian 
H which generates the equations of motion for the operators +(1) and ~(1). 
Let ~(1) -- (r ), then : "@1) 

O, 0(1) = [0(1),  HI (2.17) 

This approach is only applicable to dynamic equations (2.1) with local, 
deterministic forces and interactions; then: 

H- -=~(1 ) [U(1 )+  Uz(12). . .  U n ( 1 . . . n ) ~ b ( 2 ) . . . ~ ( n ) ]  

Equation (2.17) has the same form as the equations of quantum field 
theory. We can, therefore, apply the Schwinger functional formalism ~2) to 
derive closed equations for the exact Green's functions. 

The first step is to define a generating functional 

Z (n)  ~- (exp{ ~!(1) �9 ~(1) }) + -- (1)'+ (2.18) 

The various Green's functions are determined by evaluating functional 
derivatives of Z with respect to r I at ~! -- 0. 

It is convenient to work with the connected Green's functions which 
are generated by ff { a~ ) ~ In Z (a~). The Schwinger equations for the evolu- 
tion of the one-point connected Green's functions 

G~(1 ) :  Off _ ( * ( l ) ) "  
OTI(1) = T + 

are easily derived from (2.17), 

O, G~(I)--[  (0 (1) )~  + (O(1)6tlexp{rl(1)- O(1)})+ ] ( l / Z )  

= ([O(1)'H])~+ +io2~!(1 ) (2.19) 
Y 

where 

~ = (~ 0 
-i) 

The two-point connected Green's functions 

(O(1)O(2))~+ 
G~(12)~ 8 8 f f ( ~ l } _  

•n(1) 8~! (2) 7 

(O(1))~+ (*(2))'~+ 

Z Z 

are just the fluctuation and response functions. Their evolution is described 
by the Dyson equations which result from the functional differentiation of 
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(2.19) with respect to 7(2): 

~tla~(12) = ([~(1)'HI~I~(2))~+_ -~io2(~(1 - 2) (2.20) 
Z 

The Schwinger and Dyson equations (2.19) and (2.20) are the first in a 
hierarchy of equations. However, this hierarchy can be formally closed, 
exactly, by the following procedure. First, the Green's  functions 
(q~(2) . . .  ~(n))~_ on the right-hand side of (2.19) and (2.20) are written in 
terms of the connected Green's functions. The connected Green's functions 
G ~ ( 1 . . .  n) are in turn written in terms of two-point connected Green's 
functions G~ and the one-particle irreducible vertex functions Fn(1 . . .  n). 
The generating functional for these vertex functions results from a 
Legendre transform of if: 

r (  G;'} - Y ( ~ )  -~!(1)  �9 G~(1) 

The vertex functions are then given by functional derivatives of F{ G~} with 
respect to G~ evaluated at G~ for r / -  0. Since 

r2(12) _ 6G~~ 1)8 6G~(2)8 F{ G~} 7=0 = - Gf ' (12 )  (2.21) 

we can write any vertex function as (19) 

Fn(1 n), = -____8_6 . . .  6 G2-'(12) (2.22) 
' 8G1(3) 8G, (n)  

Therefore, every Green's function on the right-hand side of (2.19) and 
(2.20) can be formally expressed in terms of the two-point connected 
Green's functions and the vertex functions which are given by (2.22) as 
functional derivatives of G21 with respect to G 1 . Consequently, in the limit 
r/-~0, the Schwinger and Dyson equations can be written as formally 
closed functional equations for the exact one-point and two-point con- 
nected Green's functions G 1 and G 2. 

In their original paper MSR were primarily concerned with dynamical 
systems with a quadratic, deterministic interaction. The statistics appear 
through averages with respect to Gaussian initial conditions or an ensemble 
of realizations. This corresponds to a stochastic differential equation of the 
form of (2.1) with 

u,(1)  = F1(1) 

U2(12 ) = U2(12 ) 

/.73(123 ) = U3(123 ) 

g , ( 1 . . . n ) = 0 ,  n>3  



192 Jensen 

The closed operator equations (2.19) and (2.20) for the statistical 
dynamics of these systems are written compactly in MSR's notation as 

= 1  2 (2.23) [ G ~ -1 c ,  y 6, + �9 + 

G 2 1  = [ G O ] - 1  _ ]t3G 1 _ ~ (2 .24)  

where we have taken ~ = 0. [GO] - 1(12)-7_ -io20~8(t 1 - t2)-  ~,2(12) is the 
"bare" two-point propagator; and the resonance broadening term 2; is 
defined by 

Z = �89 Y3G2G2F3 (2.25) 

Finally, the three-point vertex function is given by (2.24) and (2.22): 

82 
F3 = Y3 + -~2 G2G2F3 (2.26) 

where we used the chain rule to write 

8 _ 6G2 8 _G2G2F3 8 
6Gt 8G1 8G2 6G2 

MSR also consider a system stirred by a random Gaussian force 01(1). 
Although their method does not provide a direct means of determining the 
statistical dynamics, they note that a Gaussian random force with vanishing 
mean can be represented by a deterministic correction to H of the form 
s ) where /)2(12) -- ((U,(1)L~I(2)) ) is the cumulant average of 
the random force. The calculation of closed dynamical equations then 
proceeds as before. 

Equations (2.23)-(2.26) can be solved approximately by systematically 
expanding the exact equations in some small parameter. This is much more 
satisfying than the conventional perturbation procedure, in which "small" 
corrections are added to approximate equations in the hope of improving 
the approximation. Additional advantages of this approach lie in the fact 
that the physical symmetries of the exact solution are manifest in the exact 
equations of motion but they may be absent in a method which starts from 
approximate equations. 

Although it is clear that a complete formal theory for the statistical 
dynamics of classical systems has many important advantages, the original 
method developed by MSR is limited to a restricted class of stochastic 
differential equations. The MSR theory does not provide a general formal- 
ism which naturally generates the statistical equations of motion for the 
entire class of stochastic differential equations described by (2.1). Specifi- 
cally, the only random processes treated had deterministic interactions, 
linear random forces with Gaussian statistics, and Gaussian initial condi- 
tions. Although Deker and tiaake (3) and Phythian (4) have extended the 
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MSR formalism to multiplicative random forces and Deker (~ has refined 
and extended it to non-Gaussian random initial conditions, forces, and 
interactions, nonlocal interactions have proven to be intractable for any 
extension of the MSR approach. 

2.3. Functional Integral Formalism 

An alternative approach to the description of classical dynamical 
systems was introduced by Janssen (I~ and DeDominicis. (9) They discov- 
ered that a functional integral formalism, analogous to Feynman's theory (7~ 
for quantum mechanics, provides a very natural and elegant derivation of 
MSR's results for quadratic deterministic interactions and Gaussian ran- 
dom forces. Phythian (10 has pursued the functional integral formalism 
further and shown that the statistical equations of motion for multiplicative 
random forces are also easily derived with this approach. 

We will show that the functional integral method provides a complete 
formal description of the statistical dynamics for the entire class of stochas- 
tic differential equations defined by Eq. (2.1). This is the primary contribu- 
tion of this paper. Our work unifies previous results and provides the 
formal solution to several new problems of physical interest. 

In this section we develop the functional integral theory and demon- 
strate how the MSR equations can be easily recovered. The specific results 
for non-Gaussian initial conditions, multiplicative random forces, and 
nonlocal interactions are discussed in later sections. 

Consider a multicomponent classical field ~p(1) which satisfies a sto- 
chastic differential equation of the type described by Eq. (2.1). In order to 
define a functional integral we coarse-grain the multidimensional space 
spanned by the time, position, and other continuous arguments of +(1). 
The coarse-graining procedure defines a lattice which partitions the (d + 1)- 
dimensional space into small volumes of size c a+ 1. The index 1 becomes a 
discrete index which labels the vertices on the lattice, and the stochastic 
differential equation is transformed into a difference equation. 

The functional integral is formally defined to be the multiple integral 
over the range of ~(i) at every lattice point in the limit e-~ 0, 

f D [ ~ ] . . . ~ l i m  I-I fdq~(i)... (2.27) 
e-->O i @ A d + 1 

where A d+l denotes the set of vertices on the lattice. Although the general 
mathematical theory for these infinite multiple integrals is incomplete, they 
have nevertheless proven useful in generating significant results. Conse- 
quently, we will not disgress to discuss this technical point but will refer the 
reader to the literature. (z~ 

For the purpose of illustration consider a system of one degree of 
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freedom. If ~b(1) depends only on time for t o < tl < t, then the interval 
[to, t ] can be divided into N segments of length E and Eq. (2.1) can be 
discretized in many different ways. For example, 

= ~ l U l ( t i )  Jr f i l U l ( t / _ l )  4 -  �9 �9 �9 
s 

+ [~,u,(ti ,  t2 . . .  to) + &u, ( t ,_~ , t2 . . .  t~)l 

8,o 
X ~ ( 2 ) . . . ~ ( n )  + - - ~ o  (2.28) 

E 

where a i + fl, = 1. Still other discretization schemes can be devised; how- 
ever, as r ~ 0, all of these should be equivalent. (21) The functional integral 
is simply 

N 

f D[~,] ... --lim,~=of d~(i)... (2.29) 

The generalization of these definitions to systems with many degrees of 
freedom is straightforward.(22) 

In developing our formalism we follow the approach of Jouvet and 
Phythian ~23) and consider first the formal functional integral representation 
of the solutions of deterministic equations of motion. Consider any func- 
tional F {~} of the classical field ~(1) which satisfies a dynamical equation 
of the form of (2.1). For the moment we will treat all stochastic forces and 
interactions as if they were deterministic and write 

F(~,} - - fD[~ / ]a (~ '  - ~ )F(~ ' )  (2.30) 

where ~p is the unique solution to the differential equation and the func- 
tional 6 function is defined by 

6 ( # / -  tp) = lim 1-I 6 ( ~ ' ( i )  - + ( i ) )  
~ - + 0  i E A d +  I 

Since ~ is determined by an algebraic difference equation tike (2.28) 
we can make a convenient change of coordinates: 

= fD [~b ' ]~ [4 ' ( l  ) - U , (1 ) -  U2(12)#/(2 ) + "-"  

+ U.(1 . . .  n ) # ' ( 2 ) . . .  #'(n) 

+ 6 ( t ,  - t o ) ~ o ( 1 ) ] J ( ~ ' ) F  {~'} (2.31) 

where J(# ' )  is the Jacobian that results from the coordinate change. The 
right-hand side of (2.31) signifies that the integrand is nonzero only for ~' 
which satisfies the discretized dynamical equation. 
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The explicit form of the Jacobian depends on the manner in which the 
dynamical equation is discretized. Since the different discretizations give 
the same final results, it will prove convenient to choose one such that 

j =  1-I ! 
i~Ad+l  s 

is independent of ~(i). For the one-dimensional problem this corresponds 
to the requirement that a i = 0 and/3 i = 1 in (2.28). Although J is infinite as 

~ 0, this divergence will be cancelled by another divergent constant in the 
final equations. 

The next step is to replace the 6 function by its functional Fourier 
transform, which gives 

F(+) = c f  D[~/]DI~ ] 

X e x p ( -  ( 4 (1 ) [4 ' ( 1 )  - U,(1) - U2(12)4/(2 ) 

. . . .  U,(12 . . .  n ) ~ ' ( 2 ) . . .  ~'(n) 

- 6 ( t , -  t0)~o] ) ) F { ~ '  ) (2.32) 

c =  1"I 1 
i~Aa+l 2~r~ 

transform ~(1) is an imaginary field. Our definition differs 

where 

The Fourier 
from Jouvet and Phythian's (23) by an explicit factor of ( -  i). As before this 
formal result can be justified by returning to the discrete lattice and then 
taking e-~ 0, where it is conventional to displace the discrete time argu- 
ments of ~ such tha(24) 

~+(t)~+(t) =-- ~/(t i -I- (C/2) X (ti)) (2.33) 

in order to avoid time-ordering ambiguities. 
By comparing (2.32) with the functional integrals which occur in field 

theories we can identify a Lagrangian ~ and a Hamiltonian % 

=-- ~ ( 1 ) [ 4 ( 1  ) - U(1) - U2(12)~'(2 ) . . . .  

- Un(1 . . .  n ) ~ ' ( 2 ) . . .  ~ ' ( n )  - 6 ( t  I - to )~ ,0 (1 ) ]  

------ ~(1)4'(1) - %(~ ' , 4}  (2.34) 

which allows us to write (2.32) compactly as 

F (~) = c f  D[ ~b'] D[  4 I F  { +') e x p ( -  s (2.35) 

We will see that the new field ~ which occurs naturally in (2.32) is the 
exact analog of the noncommuting operator ~/which was introduced ad hoc 
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by MSR. In fact, it has been shown that the operator theory of MSR can 
be derived directly from this functional integral formalism just as the 
Heisenberg operator theory of quantum mechanics is a consequence of 
Feynman's path integral formalism. (2l'23'25) However, rather than empha- 
size the reduction to the earlier operator theory we will pursue the develop- 
ment of the more natural and powerful functional integral theory. 

Although ~ appears in (2.32) simply as a Fourier transform variable, 
Phythian (11) has shown that it plays a crucial role in the description of 
dynamical systems. Consider the response of F(+} to an infinitesimal 
linear perturbation to the dynamical equations UI(I)-~ U,(1)+ 4(1). Then 

8F(+}=cfD[+']D[4](e [~-~(l)f(I)} -- e-  ~) F (+ ' )  

:cfD[q/]D[~,]exp(-e)[dt(1)~(1) + ~/(1)2((1) 2 + . . .  ] F ( ~ ' }  

and the linear response function is simply 

6F{~}84(I) ~(,~=o= cf ~ (2.36) 

The linear response functions to many infinitesimal disturbances is in 
general given by 

6"F{~} 
: : = c f  D [ ~ b ' ] D [  ~ ] e - ~ [ ( ~ ( 1 )  . . . ~ ( n ) ) F { ~ ' } ]  

(2.37) 

We can now reintroduce the statistics. The functional integral repre- 
sentations of functions of ~b (2.35) and of the response functions (2.37) are 
easily averaged over the random forces, interactions, or initial conditions. 
For example, 

(F{g,})--cfD[+']D[~t]F{q/}(exp(-s (2.38) 

where all the random elements are contained in the Lagrangian ~. 
Since the statistics are generally assumed to be known, the average in 

(2.38) can be performed explicitly. This defines an averaged effective 
Lagrangian L and Hamiltonian H 

(exp( -~ ) )  ~- exp( -  L) ~ exp{ - [q~(1)t}(1) - H I )  (2.39) 

This averaged Lagrangian L gives rise to the statistical equations of motion. 
Consider the generating functional 

Z{71,~}=_cf D[~']D[~]e-Lexp[q,(1)n(1)+~(1)~(1)] (2.40) 

The functional Z contains a complete statistical description of the classical 
dynamical system corresponding to the averaged Lagrangian L. All of the 



Functional Integral Approach to Classical Statistical Dynamics 197 

correlation and response functions are given by functional derivatives of Z 
with respect to ~ and ~'. 

We will formally treat ~ on an equal footing with ~ and write the 
averaged response functions (2.37) 

( 6 ~ F { ~ )  / = ( ~ ( 1 )  . . .  ~ ( n ) F { ~ } }  
8~(V) 7_ _?-~(n) f=0 

=_ cfD[ ~ ] D [  4 ][  4(1) " . .  4 ( n ) g {  +} ] e x p ( -  L) 

(2.41) 

Then the generating functional Z can be used to write the statistical 
average of any analytical functional A of ~ and ~ as 

(A ( 4 , 4 } )  = A  Z {n,~" } (2.42) 

If the functional A {4,~} depends on time for t E [t 0, T], then the response 
to perturbations at times t 1 > T vanishes. This ensures the causality of the 
response functions, which implies in particular that 

( 4 ( 1 ) . . . ) = 0  

if t~ is the latest time in the average. 
In general the functional integral representation for the generating 

functional (2.40) will be too complex for practical calculations of statistical 
quantities. 2 However, the equations of evolution for the statistical correla- 
tion and response functions can be easily obtained. Since L = ~(1)~(1) - 
H the formal Schwinger equations for the evolution of (~(1)} and (~(1)} 
are derived by a functional integration by parts. Using the identities 

fD[r ~ ~8 1 exp[~(1 )~(1 )+  ~ ' (1 )~(1) -  L ] = O  (2.43) 

we get 

l{ a } 
Z- Z ~ ( 1 )  H - ~(1) = 0 (2.44) 

1 8 - ~  H - ~(1) = 0 (2.45) Z Z 

2Various approximate techniques have been developed in quantum field theory for the direct 
evaluation of the generating functional. These include saddle point methods, variational 
principles, (7) and the renormalization group. (19) Using the functional integral formalism 
these powerful tools can also be applied to problems in classical statistical dynamics. 
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where H is explicitly determined by 

H - - I n ( e x p ' ( I ) [  U,(1) + U2(12)g,(2 ) + . - .  

+ U , ( 1 . . .  n ) ~ ( 2 ) . . .  +(n) + 8 ( t  I - to)t)o(1)] ) (2.46) 

The principal statistical quantities of physical interest are the fluctua- 
tion function 

(~(1)~(2))c~ (~(1)~(2)) - (~(1)) (~(2))  

and the averaged response function 

R(12) ~ (~(1)~(2) )c~  (~(1)~(2))  

Note that the divergent constant c no longer appears in these physical 
quantities. If the fluctuation and averaged response functions are rewritten 
a s  

8 (r 
z 

a (r 
8~'(2) Z 

then the c in the numerator is canceled by the c in the denominator. 
Moreover, a causal response function is assured since 

6 (t)(1)) 
- -  - - 0  8~'(2) Z 

for t 2 > t 1. 
The Dyson equations for the fluctuation and averaged response func- 

tions follow from (2.44) by functional differentiation with respect to ~(2) 
and f(2) 

(~(1)~b(2)) - [ (~(2)c  6~(1)~ H ) - ( + ( 2 ) ) (  ~ H ) ] = 0 & ) ( 1 )  (2.47) 

(2.48) 

Then the system of statistical equations (2.44)-(2.48) can be formally 
closed, using the same procedure as in the MSR formalism. First, the 
n-point field averages are expressed in terms of the connected Green's 
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functions which are generated by F ( ~ , ~ ) = l n Z { ~ , ~ ) .  Then these con- 
nected Green's functions are written in terms of the two-point connected 
Green's functions and the vertex functions F n(1 . . .  n) which are generated 
by the Legendre transform of F. Since all of the vertex functions are given 
in terms of functional derivatives of two-point functions with respect to 
one-point functions as in Eq. (2.22), the set of Schwinger and Dyson 
equations forms a closed set of exact statistical equations for the mean 
fields, fluctuation functions, and response functions. 

After these transformations, Eqs. (2.44)-(2.48) represent a complete 
description of the statistical dynamics of classical systems which are gov- 
erned by stochastic differential equations of the type defined by (2.1). They 
are applicable to a much broader range of physical problems than the 
results of MSR. Although these equations also prove in general to be too 
complicated to solve directly, the advantages of such a description are 
obvious. First, these exact equations of motion exhibit all of the symmetries 
and conservation laws of the exact solutions. Second, these equations serve 
as a starting point for several different systematic perturbation schemes. 

The functional integral approach provides a natural and direct deriva- 
tion of the closed Schwinger and Dyson equations for deterministic interac- 
tions and linear random forces. If we assume arbitrary random forces (2.46) 
gives in general 

H = f ( 1 ) [  0~(1) + U2(12)~,(2 ) + 03(123)g,(2)~p(3 ) + . . .  

+ 8 o ( 1 . . .  + 8(t,  - t0) 00)] 
A 

+ ln(exptp (1) U,(1)) 

= H 0 + C { 4 )  (2.49) 

H 0 represents the deterministic forces, interactions, and initial conditions 
and C is the cumulant functional 

oo 
l I ~ ( 1  ) ~ ( n ) l ( ( U l ( l  ) UI(F/)))  c ( + )  - 2 Z ,  . . . . . .  n=l 

(2.50) 

where ( ( . . . ) )  is the cumulant average of the random force. (26) For 
Gaussian random forces C {~) = ~(1)( (UI(1)) )  + (1/2)~(1)~(2)((U,(1)  
Ul(2))). When (2.49) is inserted into Eqs. (2.44), (2.45), (2.47), and (2.48), 
we can easily recover the Schwinger and Dyson equations derived by MSR 
which are written in matrix form in (2.19) and (2.20). 

In the following sections the statistical dynamical Eqs. (2.44)-(2.48) 
will be explicitly determined for a variety of important physical problems. 
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3, APPLICATIONS OF THE FUNCTIONAL INTEGRAL FORMALISM 

3.1. Non-Gaussian Initial Conditions 

Deker (6~ has recently observed that the MSR procedure cannot de- 
scribe the evolution of systems with non-Gaussian initial conditions. He 
proposed a modification of the MSR formalism and succeeded in deriving 
the "spurious" interactions which are generated by the cumulants of the 
random initial conditions. 

Deker's results are easily recovered as a special case of our functional 
integral description of general stochastic differential equations. Without 
loss of generality, consider a classical system described by a differential 
equation of the form of (2.1) with deterministic forces and interactions but 
random initial conditions. The random initial condition is treated like an 
instantaneous linear random force. Using Eq. (2.46) for the averaged 
Hamiltonian we can write down the answer immediately: 

H = ~(1)[  U,(1) + . - .  + 0 ~ ( 1 . . .  n ) t ) ( 2 ) . . .  ~(n) + 8 ( t ,  - t0)~0(1)] 
A 

+ ln(exp~(1)+0(1)8(t ,  - to) ) 

(3.1) 
where we have expanded out the cumulant function in terms of the 
cumulant averages of the random initial conditions. The corrections to H o 
are the "spurious" interactions which were derived by Deker. (6~ When H is 
inserted into (2.44), (2.45), (2.47), and (2.48) we get a complete description 
for the statistical dynamics of systems with arbitrary initial conditions. 

3.2. MultiplicaUve Random Forces 

Now consider a classical system with stochastic in teract ions  

Un(1 . . .  n). For the purposes of illustration we will examine the case with 

Uz(12) 4= 0. The results are easily generalized to systems with many stochas- 
tic interactions and using the results of Section 3.1 to systems with random 
initial conditions as well. 

Deker and Haake (3) were the first to modify the MSR formalism to 
deal with problems of this kind. They treat the random force in the 
interaction 32(12 ) as a separate field on an equal footing with + and ~. 

A different approach to this problem has also been developed by 
Phythian (14) using an elegant method based on the Novikov theorem. (27) 
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Phythian's method avoids the mixed averages of 4, ~, and U2 which result 
in Deker and Haake's approach since the Novikov theorem decouples the 
statistics of U2 from the statistics of 4. Unfortunately, the Novikov theorem 
is restricted to Gaussian random forces and both methods require that the 
interactions be local, 

The functional integral method provides a generalization of the Novi- 
kov theorem to nonlocal random interactions with arbitrary statistics. 
Furthermore, since the results of Deker and Haake are also easily recovered 
by treating the random force as an additional field, our method serves to 
unify these disparate approaches. 

Once again (2.46) enables us to write down the answer 

/ - i  = ~ ( 1 ) [  uC1) + . . .  + ~ , (1  . . .  ~ ) ~ ( 2 ) . . .  ~ ( n ) l  

+ In(exp 4~(I) I)2(12)~(2)) 

= H o + C ( ~ ( 1 ) + ( 2 ) )  (Y2) 

where the cumulant functional ~26) is given by 3 

c - ( 3 . 3 )  

and 

+ + + ( l +  + . .  (3.4) 

When (3.2) is inserted into Eqs. (2.44), (2.45), (2.47), and (2.48) we 
arrive at a complete statistical description of the dynamics of systems with 
multiplicative random forces with arbitrary statistics. 

Note that the random force U 2 appears explicitly only inside the 
cumulant averages (3.4). Consequently, our approach decouples the known 
statistics of U2 from the unknown statistics of 4. This separation of the 
statistics has important practical advantages. 

Similar results for instantaneous (local) random interactions have been 
derived by Deker (6) using an operator approach and by Phythian (~1) using 
the functional integral formalism. However, Phythian used a different 
discretization corresponding to a z -- 1 and f12 = 0 in (2.28). This gives more 
complicated equations of motion because the Jacobian is a functional of 4. 
Since the different discretizations are equivalent, Phythian's equations 
reduce to our simpler results. 

If the random interactions are Gaussian then the Schwinger and 
Dyson equations simplify considerably. Without loss of generality we 

3No ordering difficulties arise in the definition of the cumulant functional since the argument 
of the exponential in (3.2), ~(1)U2(12)~(2), is a scalar quantity. 
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neglect the deterministic forces and interactions. Then the statistical equa- 
tions of motion are 

at, (~(I)) - (< U2(II)> ) <,(I)> ~- (< U2(11) U2(22)> ) <#(I)~(2)+(2)>Z 

- ~'(1) = ( ~ ( t  1 - / 0 ) ~ 0 ( 1 )  ( 3 . 5 )  

8 8t, (#(I)) - (< U2(ll)>)<~(T)>~ 

-~1(1) = 0  (3.6) 

a St, (#(I)#(I'))c- (< U2(II)> )<#(T)#( l'))c- (< U2(II) U2(22)> ) 
[ (#(I)~(2)#(2)#(I')> (#(I)~ (2)#(?.) > <#(I')> ] 

X Z - Z 2 m_ 0 (3.7) 

8 (#,(1)~(1,)) c -  ((/.~2(IT) ) )<~(T)~(I ' )>r ((02(11)0(22))  ) 
i ) t  1 

i <#(T)~(2)#(2)~(I')> <,(#)~(2)#(2)><~(1')> ] - -8( I - I ' )  
• Z - Z 2 

(3.8) 

These equations can be formally closed by expanding the three- and 
four-point correlations in terms of the connected Green's functions and 
then writing the connected Green's functions in terms of the two-point 
connected Green's functions and the three-point and four-point vertex 
functions. 

If we neglect the three- and four-point connected Green's functions 
then 

O 
8t I 
- -  < #~(1)#~(1')>c- < < 32( 1T)> >< #~ (T)#~(I')>c 

_ ( (~2(1~) ~2(2~))) ( #j(T)#~(2))r (~b(2)+(l')) = 0 (3.9) 

(~(1)~(1'))  - ( (U2( l l ) )  )(~p(T)~(l')) - ((/)2(1T)/~2(22))) 8t~ 
X (~(T)4(2))c<t)(2)4(l ')>c= 6(1 - 1') (3.10) 
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These renormalized equations of motion for the fluctuation and response 
functions are identical to those derived in the direct interaction approxima- 
tion (13) (DIA) using the methods of Deker and Haake. 

Krommes, Kleva, and Oberman (13) have applied the approach of 
Deker and Haake to the problem of particle motion in a stochastic 
magnetic field which was outlined in Section 2.1.2. Unfortunately, because 
of complications related to the appearance of mixed averages of ~ and U2, 
they were unable to complete the problem beyond the DIA. Although the 
equations of motion (3.9) and (3.10) of both approaches are identical in 
lowest-order renormalized perturbation theory (DIA), our new results (3.7) 
and (3.8) avoid the complications of mixed averages to all orders in the 
perturbation theory. The problem of particle motion in stochastic magnetic 
fields will be pursued further using (3.7) and (3.8) in a subsequent paper. 

3.3. Nonlocal  Interact ions 

One of the distinct advantages of the functional integral formalism is 
that there are no restrictions to local or instantaneous interactions. The 
results of Section 2.3 are valid for any nonlocal but causal interaction 
U n ( l . . .  n). Consequently, this theory extends the modern methods of 
renormalized perturbation theory to a large new class of problems. 

Many equations of this class, which originate from second- or higher- 
order differential equations, can also be written as a system of first-order 
differential equations with local interactions by extending the number of 
fields. This system of differential equations can be formally solved using 
the MSR formalism. However, the complications of the additional fields 
are easily avoided by dealing directly with a single differential equation 
with nonlocal interactions. 

Some examples of important problems for which formal solutions can 
be obtained using the functional integral formalism are wave propagation 
in random media and the nonlinear theory of electromagnetic plasma 
turbulence. The structure of the dynamical equations for both problems 
was outlined in Section 2.1. In this section we will study the theory of 
electromagnetic plasma oscillations using both the Vlasov and Klimonto- 
vich descriptions; and we will derive the electromagnetic dispersion ten- 
sor (28) in lowest-order renormalized perturbation theory. A detailed discus- 
sion of the stochastic wave equation will be reserved for a future publica- 
tion. 

Krommes and Kleva (12) have succeeded in calculating the dielectric 
tensor for electrostatic oscillations in a turbulent plasma using the methods 
of MSR. However, they were unable to apply their theory directly to the 
electromagnetic problem because of the restriction of the MSR approach to 
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instantaneous interactions. Using the functional integral approach it is easy 
to extend Krornmes and Kleva's results to the electromagnetic case. 

In Section 2.1.4 we showed that the Vlasov-Maxwell equations can be 
written in the form of (2.1) with nonlocal deterministic interactions and 
Gaussian random initial conditions. The Klimontovich phase space density 

s l  

c~)7~s,(X,,u t , )  ~ 2 (~(Xl -- Xl(ti))~(u -- v , ( t , ) )  
i=1 

satisfies the same dynamical equations; however, the random initial condi- 
tion %o (x,,vl ' t.) is manifestly non-Gaussian due to discrete particle self- 
correlations. (5'29'3~ The corresponding stochastic differential equation is 

0 + ( 1 )  
0t I U2(12)+(2) - U3(123)~(2)+(3 ) = 6(t I - t0)+0(1 ) (3.11) 

The effective Hamiltonian is given by (2.46) 

H = H 0 + H (3.12) 

where H%= ~(1)[ 82(12)q~(2) + U---3(123)+(2)+(3) + 8 ( t  1 - t0){o(1)] and /1 
= ln(ex p +(1)8(tl - t0)+o(1)). 

Substituting H into (2.44), (2.47), and (2.48) we get the statistical 
equations of motion for the mean field, the fluctuation function, and the 
response function: 

0 (~b(1)} 82(12) (+(2)} U3(123 ) (~b(2)~b(3)} ~'(I) 
Ot~ Z Z Z 

_ Z (  818~(1)/4/~ (3.13) 

0 Ot, (~(1)+(l ' )}c-  Uz(12)(~/(2)~b(l'))c 

_ ~3(123) [ (q,(Z)ff(3)+(l')} _ Z  (~b(l')} (t)(2)+(3) } Z 2  l 

Z 8~(1) 6~(1) 

(~b(1)~(l')} - U2(12)(+(2)~(1')) ~ 
Ot~ 

[ (t)(2)~(3),/(1')) (~(1')} (g,(2)~(3)} l 
- 83(123) Z - Z 2 = 8(1 - 13 

(3 .15)  
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For Gaussian random initial conditions the right-hand sides of (3.13) 
and (3.14) simplify further. For ~, ~" ~ 0 

1 I 8~(1) l ~ l ~ ( ~ l ) ) 8 ( t l - t o )  

8q41) 
= t o ) 8 ( t , -  to) 

where we have used 

( ~ ( 1 ) ) [ n , ~ = 0 = 0  and Z ] n , ; = 0 = l .  (3.17) 

In order to close (3.13), (Y14), and (3.15), we first express the three- 
point  correlation functions in terms of the connected Green's  functions. 
The resulting equations for the fluctuation function C(12)=-- (~(1)~(2))c  

A 

and response function R(12)--= (4,(1)~(2))~ as 7/, ~'--)0 are 

__~_a C ( l l ,  ) - f f 2 ( 1 2 ) C ( 2 1 ' ) -  03(123)( tp(2) )C(31 ' )  
Otl 

- U3(123)( tp(3))C(21 '  ) - 03(123)(~(2)~p(3)~(1 ' ) )  c 

tl 
R(l'2)C(2, to;1, to)6(t2-to)]8(tl-to), Vlasov description 

1 (~b(l')~b(2) . ~(n))oS(t 2 - to). 8(t~ - to) 
= n=l - -  (n - 1)! . . . .  

• 7~(1 . . .  n)]  8( t  1 - to), Klimontovich description 

(3.18) 

O R ( l l ' ) -  U2(12)R(21' ) - U3(123) (~(2 ) )R(31 '  ) 
0t 1 

- 03 (123 ) (~ (3 ) )R(21 ' )  

- U3(123) ( f f ( 2 )~ (3 )~  (1 ' ))  C 

= 6(1 - 1') (3.19) 

where y g ( 1 . . ,  n) ~ <<~0(1 ) . . .  ~0(n))>. 
The three-point connected Green's  functions are in turn expressed in 

terms of the two-point connected Green's  functions and the three-point 
vertex function F 3. Let 
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then using the functional chain rule, Eq. (2.22) gives 

F~m'(23T) --[(qb,(2)~b,().))c (q~J(3)qbm(3))c ( qbk( 1 ')qb'(T))c ]-1 

• (~i(2)%(3)q~(1')) c (3.20) 

The vertex functions can be explicitly calculated using Eq. (2.22). In 
the Klimontovich description only I'3211(i~T), I'~21(~JT), I'~2(~T), and 
F~2:(23T) are nonzero to first order in a weak coupling expansion. There- 
fore, (3.20) gives 

(g,(2)~(3)~(1'))~ = R(22)C(3J)C( l ' I )F23  ~ '(23T) 

+ C(22)R(33 )C( l ' l )F~z ' c23 - f  ) 

+ C(2~2)C(33)R(I 'T)V~'2(231) 

+ R(22)R(33)R( l 'T )F~22(231)  (3.21) 

(+(2)~(3)~(1')) = R ( 2 2 ) C ( 3 5 ) R ( [ I ' ) F ~ " ( 2 3 1 )  

+ c(2~)R (3~)R (TI')F~2'(~T) (3.22) 

In lowest-order renormalized perturbation theory (DIA) Eqs. (2.22), 
(3.18), and (3.19) give 

F]"(231) ~ U~(231) + U3(213) (323) 

F~2~(231) ~ U3(321 ) + U3(312) (3.24) 

F~'~(231) ~ U3(132 ) + U3(123 ) (3.25) 

• ~(t~ - to)B(t ~ - to) (3.26) 

Since the initial distribution of particle positions in phase space is 
assumed to be known the cumulant average in (3.26) can be explicitly 
calculated. All other vertex functions either vanish owing to causality 
requirements or are higher order in the nonlinear coupling. Following 
Krornrnes and Kleva (~2) we then identify 

Z(l l)  = U3(123)R(22)C(33)I U3(231) + U3(213)] 

+ U3(123)R(33)C(22)I U3(321) + U3(312)] (3.27) 

Z(l l )  = U3(123)C(22)C(33)[ U3(132) + U3(123)] (3.28) 

~p(11) = U3(123) R (22) R (33)F3222(231) (3.29) 

I go]- '(12) = 8(1 - 2) ~ t  2 - ff2(12) - U3(132)(+(3)) (3.30) 
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Finally, using (3.2I)-(3.28), the dynamical equations can be written 
compactly as 

[ go]-'(12)C(21') - U3(123)(~(3))C(21') - Z(ll)C(TI')  

- 2 ( l l ) R ( l ' l )  - 2 p ( I I ) R ( I ' I )  

= C ( l l ' ) 6 ( t , -  to) (3.31) 

[ go]-l(12)R(21') - O3(123)(~(3))R(21') 

- Y~(1T)C(ll) = 6(1 - 1') (3.32) 

Equations (3.13), (3.31), and (3.32) provide a complete statistical 
description of electromagnetic plasma turbulence to first order in the 
nonlinear coupling. The nonlinear interaction terms Z, 22, Z e have simple 
physical interpretations. 22 is a resonance-broadening term, 22 is a source of 
incoherent noise due to mode-mode coupling, and ~e is a source of 

, (5) discrete particle noise. These results correspond to Rose s particle direct 
interaction approximation. In the Vlasov description the statistical equa- 
tions have the same form except that Zp is omitted from (3.31) since 
F 222 ~ 0 for Gaussian initial conditions. 

Krommes and Kleva showed that in the electrostatic problem R can 
be considered as the renormalized propagator for a shielded test particle 
where the shielding is determined explicitly by a nonlinear, renormalized 
dielectric function. Analogous results can be shown for the electromagnetic 
case with the dielectric function replaced by the dispersion tensor. 

Using the explicit representation of 03 given by (2.16), we can write 22 
as the sum of two types of terms: 

Z ( 1 T ) = - { I ~ v  R(12)]'L(13)L(23)C(33) 

I 3 . /(23)C(13)]} 3 6 ( 2 - T )  + L(13)R(32) ~ .-~v 2 

- { I ~ R  ] t(13) 3 C(32) 3v, (12)j �9 

+ L(13)R(32) 
"[ 3V, 3u 2 

[ 3 6@(12)]-L(21) (3.33) - -  z ' ( 1 T )  + 

Using a more compact notation, Eq. (3.32) for the averaged response 
function takes the form 

g - ' R  + + ar  = 1 (3.34) 
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One piece of the nonlinear interaction term Z renormalizes the bare 
propagator g, 

g 1(12) = [  go]-1(12) + Z'(12) (3.35) 

and the other piece modifies the mean background distribution 

r --= (~,(1))6(1 - 2) + 6r (3.36) 

Solving formally for R we get 

LR = A-t  : Lg (3.37) 

and 

where the shielding is described by 

A(21) = 16(2 - 1) + L(22)g(2 . ] )0~- r  ) (3.39) 

The electromagnetic dispersion tensor relates the average electromag- 
netic fields inside a stochastic dispersive medium, which result as a re- 
sponse to externally applied fields, to the perturbing fields. Using the 
arguments of Krommes and Kleva (12) it can be shown that A is a correct 
representation of the electromagnetic dispersion tensor. 

The author has also considered this problem by extending the number 
of components of the classical field to make the interactions local. This 
allows the methods of MSR to be used. The results of this rather tedious 
calculation are identical to Eq. (3.39). 

Finally, the reduction to linear theory can be shown, if we transform 
the dispersion tensor into a more familiar form which relates the total 
electric field to an applied external current. (28) In an isotropic medium the 
longitudinal and transverse parts of the dispersion tensor decouple. In 
Fourier transform space 

A(k,~o)_= c - [  k-s ] 2 p t o a  

where 

and 

kikj 
i = 1,2,3 Pt ~- (~j k2 , 

J = 6ij - 4~r Z nsq~ 
s ms 

i f d3vgk~vi[(1- k ' v  
o~ o2 avj +vj~. ~v r 

(3.40) 
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gk~ is the kernel of the bare propagator (3.35) in Fourier space and f is 
defined by (3.36). Equation (3.40) reduces to the linear dispersion tensor (28) 
when the nonlinear terms 57' in g and 3f in ] are neglected. 

4. CONCLUSION 

We have developed a functional integral formalism for the description 
of the statistical dynamics of a broad class of stochastic differential 
equations. The functional integral approach provides a natural and elegant 
derivation of all previous results based on the MSR operator formalism and 
extends these methods to classical systems with nonlocal interactions. 
Moreover, we emphasize that the functional integral results decouple the 
known statistics of the random forces, interactions, and initial conditions 
from the unknown statistics of the classical random fields. 

Our formal results are illustrated by an application in the theory of 
electromagnetic plasma turbulence. Using the functional integral formalism 
for nonlocal interactions we have extended Krommes and Kleva's deriva- 
tion of the nonlinear dielectric function for electrostatic plasma turbulence 
to the electromagnetic case. The resulting nonlinear dispersion tensor 
provides a formal basis for further work on the nonlinear evolution of 
plasma instabilities. 

ACKNOWLEDGMENTS 

The author is grateful to C. Oberman and J. Krommes for stimulating 
discussions. 

This work was supported by the United States Department of Energy 
Grant No. DE-AC02-76-CH03073. 

REFERENCES 

1. P.C. Martin, and E. D. Siggia, and H. A. Rose, Phys. Rev. A 8:423 (1973). 
2. J. Schwinger, Proc. Natl. Acad. Sci., 37:452 (1951). 
3. U. Deker and F. Haake, Phys. Rev. A 11:2043 (1975). 
4. R. Phythian, J. Phys. A 9:269 (1976). 
5. H.A.  Rose, J. Stat. Phys. 20:415 (1979). 
6. U. Deker, Phys. Rev. A 19:846 (1979). 
7. R.P.  Feynrnan and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, 

New York, 1965). 
8. R. Graham, in Springer Tracts in Modern Physics, Vol. 66 (Springer, New York, 1973). 
9. C. DeDominicis, J. Phys. (Paris) Colloq. 1:247 (1976). 

10. H.K.  Janssen, Z. Phys. B 23:377 (1976). 
11. R. Phythian, J. Phys. A 10:777 (1977). 
12. J .A.  Krommes and R, G. Kleva, Phys. Fluids 22:2168 (1979). 



210 Jensen 

13. J. A. Krommes, R. G. Kleva, and C. Oberman, Princeton Plasma Physics Laboratory 
Report PPPL-1389 (1978) (to be published). 

14. A. lshimaru, Wave Propagation and Scattering in Random Media (Academic Press, New 
York, 1978). 

15. U. Frisch, in Probabilistic Methods in Applied Mathematics (Academic Press, New York, 
1968). 

16. J .D.  Jackson, Classical Electrodynamies (Wiley, New York, 1975). 
17. R.H.  Kraichnan, J. Math. Phys. 2:124 (1961). 
18. H.A.  Rose, thesis, Harvard, 1974 (unpublished). 
19. D.J .  Amit, Field Theory, Renormalization Group, and Critical Phenomena (McGraw-Hill, 

New York, 1978). 
20. K. Friedrichs, H. N. Shapiro, J. Schwartz, B. Wendroff, and T. Seidman, Integration of 

Funetionals (Courant Institute of Mathematical Sciences, New York, 1976). 
21. F. Langouche, D. Roekaerts, and F. Tirapegui, Physica (Utrecht) 95A:252 (1979). 
22. E.S. Abers and B. W. Lee, Phys. Rep. 9:1 (1973). 
23. B. Jouvet and R. Phythian, Phys. Rev. A 19:1350 (1979). 
24. A. Katz, Classical Mechanics, Quantum Mechanics, Field Theory, (Academic Press, New 

York, 1965). 
25. L. Garrido, D. Lurie, and M. San Miguel, J. Stat. Phys. 21:313 0979). 
26. R. Kubo, J. Phys. Soc. Japan 17:1100 (1962). 
27. E.A. Novikov, Soy. Phys. JETP 20:1290 (1965). 
28. S. Ichimaru, Basic Principles of Plasma Physics: A Statistical Approach (Benjamin, New 

York, 1973). 
29. Yu. L. Klimontovich, The Statistical Theory of Non-Equilibrium Process in a Plasma (The 

MIT Press, Cambridge, Massachusetts, 1967). 
30. A.L. Rogister and C. Oberman, J. Plasma Phys. 2:33 (1968). 


